Bioassays of compounds with potential juvenoid activity on Drosophila melanogaster: juvenile hormone III, bisepoxide juvenile hormone III and methyl farnesoates.

نویسندگان

  • Lawrence G Harshman
  • Ki-Duck Song
  • Josephina Casas
  • A Schuurmans
  • Eichii Kuwano
  • Stephen D Kachman
  • Lynn M Riddiford
  • Bruce D Hammock
چکیده

Metabolites of the 6,7,10,11 bisepoxide juvenile hormone III (JHB(3)), and other potential juvenoids, were tested for juvenile hormone activity using early instar or early stage pupae of Drosophila melanogaster. Importantly, methyl farnesoates were tested as they might have JH-like activity on Dipteran juveniles. Larvae were exposed to compounds in medium, or the compounds were applied to white puparia. In the assays employed in the present study, there was no indication for JH activity associated with the metabolites of JHB(3). The activity of methyl farnesoate (MF) was higher than that of JH III and far greater than bisepoxide JH III. As opposed to the two endogenous juvenile hormones, methyl farnesoate has weak activity in the white puparial bioassay. When fluorinated forms of methyl farnesoate, which is unlikely to be converted to JH, were applied to Drosophila medium to which fly eggs were introduced, there was a high degree of larval mortality, but no evidence of subsequent mortality at the pupal stage. One possible explanation for the results is that methyl farnesoate is active as a hormone in larval stages, but has little activity at the pupal stage where only juvenile hormone has a major effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioassays of Compounds with Potential Juvenoid Activity on <i>Drosophila melanogaster</i>: Juvenile Hormone III, Bisepoxide Juvenile Hormone III, and Methyl Farnesoates

Metabolites of the 6,7,10,11 bisepoxide juvenile hormone III (JHB3), and other potential juvenoids, were tested for juvenile hormone activity using early instar or early stage pupae of Drosophila melanogaster. Importantly, methyl farnesoates were tested as they might have JH-like activity on Dipteran juveniles. Larvae were exposed to compounds in medium, or the compounds were applied to white H...

متن کامل

Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera.

The in vitro production of juvenile hormone (JH) was investigated by using isolated ring glands from third instar Drosophila melanogaster. A JH-like molecule is secreted that comigrates with a synthetic sample of methyl 6,7;10,11-bisepoxy-3,7,11-trimethyl-(2E)-dodecenoate (JHB3) during TLC, liquid chromatography, and GC analysis. Purified product from farnesoic acid-stimulated ring glands was a...

متن کامل

Aspergillus nidulans Synthesize Insect Juvenile Hormones upon Expression of a Heterologous Regulatory Protein and in Response to Grazing by Drosophila melanogaster Larvae

Secondary metabolites are known to serve a wide range of specialized functions including communication, developmental control and defense. Genome sequencing of several fungal model species revealed that the majority of predicted secondary metabolite related genes are silent in laboratory strains, indicating that fungal secondary metabolites remain an underexplored resource of bioactive molecule...

متن کامل

Ligand binding pocket function of Drosophila USP is necessary for metamorphosis.

The widely accepted paradigm that epoxidized methyl farnesoates ("juvenile hormones," JHs) are the principal sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis of circulating methyl farnesoids during the mid to late 3rd instar showed that methyl farnesoate is predominant over methyl epoxyfarnesoate (=JH III). The circulating concentr...

متن کامل

Characterization and cDNA cloning of a clofibrate-inducible microsomal epoxide hydrolase in Drosophila melanogaster.

In order to understand the roles of the epoxide hydrolases (EHs) in xenobiotic biotransformation in insects, we examined the induction of EHs by exogenous compounds in Drosophila melanogaster third instar larvae. Among the chemicals tested, clofibrate, a phenoxyacetate hypolipidermics drug, increased EH activity towards cis-stilbene oxide approximately twofold in larval whole-body homogenates. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of insect physiology

دوره 56 10  شماره 

صفحات  -

تاریخ انتشار 2010